Mark Scheme 4766 June 2007

Q5 (i)	$11^{\text {th }}$ value is $4,12^{\text {th }}$ value is 4 so median is 4 Interquartile range $=5-2=3$	B1 M1 for either quartile A1 CAO	3
(ii)	No, not valid any two valid reasons such as : - the sample is only for two years, which may not be representative - the data only refer to the local area, not the whole of Britain - even if decreasing it may have nothing to do with global warming - more days with rain does not imply more total rainfall - a five year timescale may not be enough to show a long term trend	E1 E1	3
		TOTAL	6
Q6 (i)	$\begin{aligned} & \text { Either } \mathrm{P} \text { (all } 4 \text { correct })=\frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}=\frac{1}{35} \\ & \text { or } \mathrm{P}(\text { all } 4 \text { correct })=\frac{1}{{ }^{7} \boldsymbol{C}_{4}}=\frac{1}{35} \end{aligned}$	M1 for fractions, or ${ }^{7} \mathrm{C}_{4}$ seen A1 NB answer given	2
(ii)	$\begin{aligned} & \mathrm{E}(X)=1 \times \frac{4}{35}+2 \times \frac{18}{35}+3 \times \frac{12}{35}+4 \times \frac{1}{35}=\frac{80}{35}=2 \frac{2}{7}=2.29 \\ & \mathrm{E}\left(X^{2}\right)=1 \times \frac{4}{35}+4 \times \frac{18}{35}+9 \times \frac{12}{35}+16 \times \frac{1}{35}=\frac{200}{35}=5.714 \\ & \operatorname{Var}(X)=\frac{200}{35}-\left(\frac{80}{35}\right)^{2}=\frac{24}{49}=0.490 \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 for $\underset{\sim}{r} r p$ (at least 3 terms correct) A1 CAO M1 for $\Sigma x^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(X)^{2}$ A1 FT their $\mathrm{E}(X)$ provided $\operatorname{Var}(X)>0$	5
		TOTAL	7

	Section B		
$\begin{aligned} & \text { Q7 } \\ & \text { (i) } \end{aligned}$		G1 probabilities of result G1 probabilities of disease G1 probabilities of clear G1 labels	4
(ii)	$\begin{gathered} \mathrm{P}(\text { negative and clear })=0.91 \times 0.99 \\ \quad=0.9009 \end{gathered}$	M1 for their 0.91×0.99 A1 CAO	2
(iii)	$\begin{aligned} \mathrm{P}(\text { has disease }) & =0.03 \times 0.95+0.06 \times 0.10+0.91 \times 0.01 \\ & =0.0285+0.006+0.0091 \\ & =0.0436 \end{aligned}$	M1 three products M1dep sum of three products A1 FT their tree	3
(iv)	P (negative \| has disease) $=\frac{\mathrm{P}(\text { negative and has disease })}{\mathrm{P}(\text { has disease })}=\frac{0.0091}{0.0436}=0.2087$	M1 for their 0.01×0.91 or 0.0091 on its own or as numerator M1 indep for their 0.0436 as denominator A1 FT their tree	3
(v)	Thus the test result is not very reliable. A relatively large proportion of people who have the disease will test negative.	E1 FT for idea of 'not reliable' or 'could be improved', etc E1 FT	2
(vi)	P (negative or doubtful and declared clear) $\begin{aligned} & =0.91+0.06 \times 0.10 \times 0.02+0.06 \times 0.90 \times 1 \\ & =0.91+0.00012+0.054=0.96412 \end{aligned}$	M1 for their 0.91 + M1 for either triplet M1 for second triplet A1 CAO	4
		TOTAL	18

$\begin{aligned} & \hline \text { Q8 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} X \sim \mathrm{~B}(17,0.2) & \\ \mathrm{P}(X \geq 4)= & 1-\mathrm{P}(X \leq 3) \\ & =1-0.5489=0.4511 \end{aligned}$	B1 for 0.5489 M1 for 1 - their 0.5489 A1 CAO	3
(ii)	$\mathrm{E}(\mathrm{X})=n p=17 \times 0.2=3.4$	M1 for product A1 CAO	2
(iii)	$\begin{aligned} & \mathrm{P}(X=2)=0.3096-0.1182=0.1914 \\ & \mathrm{P}(X=3)=0.5489-0.3096=0.2393 \\ & \mathrm{P}(X=4)=0.7582-0.5489=0.2093 \end{aligned}$ So 3 applicants is most likely	B1 for 0.2393 B1 for 0.2093 A1 CAO dep on both B1s	3
(iv)	(A) Let $p=$ probability of a randomly selected maths graduate applicant being successful (for population) $\mathrm{H}_{0}: p=0.2$ $\mathrm{H}_{1}: p>0.2$ (B) $\quad \mathrm{H}_{1}$ has this form as the suggestion is that mathematics graduates are more likely to be successful.	B1 for definition of p in context B1 for H_{0} B1 for H_{1} E1	4
(v)	$\begin{aligned} & \text { Let } X \sim \mathrm{~B}(17,0.2) \\ & \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.8943=0.1057>5 \% \\ & \mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)=1-0.9623=0.0377<5 \% \end{aligned}$ So critical region is $\{7,8,9,10,11,12,13,14,15,16,17\}$	B1 for 0.1057 B1 for 0.0377 M1 for at least one comparison with 5\% A1 CAO for critical region dep on M1 and at least one B1	4
(vi)	Because $\mathrm{P}(X \geq 6)=0.1057>10 \%$ Either: comment that 6 is still outside the critical region Or comparison $\mathrm{P}(X \geq 7)=0.0377<10 \%$	$\begin{aligned} & \hline \text { E1 } \\ & \text { E1 } \end{aligned}$	2
		TOTAL	18

